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ABSTRACT: It is the known fact that as the probabilistic measures of entropy is important mathematical 
tools in many optimization problems because of the importance of occurring events. In the present 
communication, we introduce new generalized information model based upon discrete probability 
distributions and we further discuss some of its properties. 
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I. INTRODUCTION 

The information entropy introduced by Shannon [9] 
measures the amount of uncertainty contained in a 
probabilistic experiment, and is not a single monolithic 
concept. It can appear in several guises. It can arise in 
probabilistic phenomenon type. On the other hand, it can 
also appear in a deterministic phenomenon where we 
know that the outcome is not a chance event, but we are 
fuzzy about the possibility of the specific outcome. This 
type of uncertainty arising out of fuzziness is the subject 
of investigation of the relatively new discipline of fuzzy 
set theory. In this paper our objective is to deal with the 
probabilistic measures of uncertainty called entropy 
given by 
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Some other entropic models are: 
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Which is modified form of Havrada and Charvat [4] 
measure of entropy. Other entropic models are given by 
Wang [12], Chen and Geman [2], Parkash, Thukral and 
Gandhi [8], Sharma and Mittal [10], Vinocha and 
Hemlata [11], Chen [1], Cincotta and Giordano [3], 
Khozani and Bonakdari [5] etc. Parkash and Mukesh [7] 
applied their entropic models to queuing theory whereas 
Parkash and Kakkar [6] developed some new measures 
of information so as to apply their findings in coding 
theory. In section 2, we discuss the study of a new 
generalized entropic model for discrete distribution. In 
section 3, we discuss about the conclusion. 

II. A NEW PROBABILISTIC MEASURE OF ENTROPY 
FOR DISCRETE PROBABILITY DISTRIBUTIONS 

The objective of this paper is to discuss the concavity of 
the entropic model of order α  given by   
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We have 
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which is Shannon’s [9] entropy except for a multiple 

constant implying that ( )H Pα is a generalized entropy 

model. 

Next, to make ( )H P
α authentic, we study its properties 

as follows: 
1. Non-Negativity 

For 1,α > we have 
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2. Symmetry: ( )H P
α is permutationally symmetric 

because of the fact that it remains invariant if 

1 2 3, , ,..., np p p p  are rearranged among themselves. 

3. Continuity: ( )H Pα  is a continuous function of 
i

p  for 

all ip ’s. 

4. Concavity: To prove concavity property, we proceed 
as follows: 
We have 
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Thus, ( )H P
α  is concave. Moreover, the graphical 

presentation of ( )H P
α provided in Fig. 1 obtained 

numerically from Table 1 proves the concavity of the 
measure (2.1). 
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Fig. 1. Concavity of ( )H P
α  with respect to P . 

Under the above properties, we assert that the proposed 
model is a legitimate entropic model. 

 Next, we learn some more desirable properties of

( )H P
α . 

5. Expansibility: We have 

( )1 2 3, , ,..., ,0nH p p p p
α = ( )1 2 3, , , ..., nH p p p p

α which 

shows that the ( )H P
α is invariant upon addition of an 

impractical event. 

6. Uncertainty for Degenerate Distributions:   

For n  degenerate probability distributions

{ }(1,0,...,0),(0,1,...,0),...,(0,0,...,1) , we have 

( ) 0H P
α = which provides the indication that certain 

outcomes always result in zero uncertainty. 
7. Entropy Maximization: In many real life situations, 
we usually come across many optimization problems 
dealing with different disciplines. One such a problem is 
to find the maximum value of entropy function so as to 
reduce uncertainty contained in a probabilistic 
experiment. To find the extreme value of the proposed 
entropy, we use Lagrange’s method of maximum 

multipliers and thus our problem reduces in maximizing 

( )H P
α under the likely restriction
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To apply the method, we have  
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which is promising only if 
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. Moreover, 
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Hence, we conclude that ( )H P
α possesses maximum 

value when
n

ppp n

1
...21 ==== . This most wanted 

property coveys that the entropic model attains its 
maxima at the uniform distribution. 

8. Maximum Value: The maximum value of the entropy 
is given by: 
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which shows that ( )H Pα  increases for the large values 

of n, which again delivers a most attractive result 
because of the fact that the maximum entropy function 
should always  have one direction, that is, the direction 
of increase. 

III. CONCLUSION 

We found that the generalized measures of information 
induce flexibility and unbiasedness into the system and 
hence find their significance and importance towards 
application areas in different disciplines. Further, we 
made investigations and new proposal for generalized 
parametric entropic models. Such parametric as well as 
non-parametric mathematical models can be developed 
so that their applications may be provided.  
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Table 1: Numerical numbers for ( )H P
α provided in Fig. 1. 
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α  
ip  0 1⋅  0 2⋅  0 3⋅  0 4⋅  0 5⋅  0 6⋅  

 

0 7⋅  

 

0 8⋅  

 
0 9⋅  

 

0 1⋅
 

( )H Pα

 
1.02053 1.18844 1.32959 1.45671 1.53588 1.45671 1.32959 1.18844 1.02053 

0 3⋅

 

( )H Pα

 
0.91255 1.20083 1.41417 1.56071 1.61557 1.56071 1.41417 1.20083 0.91255 

0 6⋅

 

( )H Pα

 
0.86424 1.27916 1.54959 1.70627 1.75785 1.70627 1.54959 1.27916 0.86424 


